EWG01PDemo/js/fft/fft.js
2025-01-17 13:55:44 +08:00

70 lines
2.2 KiB
JavaScript

/*===========================================================================*\
* Fast Fourier Transform (Cooley-Tukey Method)
*
* (c) Vail Systems. Joshua Jung and Ben Bryan. 2015
*
* This code is not designed to be highly optimized but as an educational
* tool to understand the Fast Fourier Transform.
\*===========================================================================*/
//------------------------------------------------
// Note: Some of this code is not optimized and is
// primarily designed as an educational and testing
// tool.
// To get high performace would require transforming
// the recursive calls into a loop and then loop
// unrolling. All of this is best accomplished
// in C or assembly.
//-------------------------------------------------
//-------------------------------------------------
// The following code assumes a complex number is
// an array: [real, imaginary]
//-------------------------------------------------
var complex = require("./complex"),
fftUtil = require("./fftutil");
//-------------------------------------------------
// Calculate FFT for vector where vector.length
// is assumed to be a power of 2.
//-------------------------------------------------
export function fft(vector) {
var X = [],
N = vector.length;
// Base case is X = x + 0i since our input is assumed to be real only.
if (N == 1) {
if (Array.isArray(vector[0]))
//If input vector contains complex numbers
return [[vector[0][0], vector[0][1]]];
else return [[vector[0], 0]];
}
// Recurse: all even samples
var X_evens = fft(vector.filter(even)),
// Recurse: all odd samples
X_odds = fft(vector.filter(odd));
// console.log(`vector.length:${vector.length}, evens:${X_evens.length}, odds:${X_odds.length}`);
// Now, perform N/2 operations!
for (var k = 0; k < N / 2; k++) {
// t is a complex number!
var t = X_evens[k];
// console.log(`k:${k}, N:${N}, t:${t}, X_odds[k]: ${X_odds[k]}`);
var e = complex.multiply(fftUtil.exponent(k, N), X_odds[k]);
X[k] = complex.add(t, e);
X[k + N / 2] = complex.subtract(t, e);
}
function even(__, ix) {
return ix % 2 == 0;
}
function odd(__, ix) {
return ix % 2 == 1;
}
return X;
}