feat(backend):数据抽取,切换Doris

This commit is contained in:
junjie 2021-04-23 15:09:43 +08:00
parent 84f68f1e4a
commit 9302d0f092
9 changed files with 520 additions and 447 deletions

View File

@ -2,7 +2,6 @@ package io.dataease.config;
import com.fit2cloud.autoconfigure.QuartzAutoConfiguration;
import io.dataease.commons.utils.CommonThreadPool;
import org.apache.spark.sql.SparkSession;
import org.pentaho.di.core.KettleEnvironment;
import org.pentaho.di.repository.filerep.KettleFileRepository;
import org.pentaho.di.repository.filerep.KettleFileRepositoryMeta;
@ -32,31 +31,31 @@ public class CommonConfig {
// return configuration;
// }
@Bean
@ConditionalOnMissingBean
public SparkSession javaSparkSession() {
SparkSession spark = SparkSession.builder()
.appName(env.getProperty("spark.appName", "DataeaseJob"))
.master(env.getProperty("spark.master", "local[*]"))
.config("spark.scheduler.mode", env.getProperty("spark.scheduler.mode", "FAIR"))
.config("spark.serializer", env.getProperty("spark.serializer", "org.apache.spark.serializer.KryoSerializer"))
.config("spark.executor.cores", env.getProperty("spark.executor.cores", "8"))
.config("spark.executor.memory", env.getProperty("spark.executor.memory", "6442450944b"))
.config("spark.locality.wait", env.getProperty("spark.locality.wait", "600000"))
.config("spark.maxRemoteBlockSizeFetchToMem", env.getProperty("spark.maxRemoteBlockSizeFetchToMem", "2000m"))
.config("spark.shuffle.detectCorrupt", env.getProperty("spark.shuffle.detectCorrupt", "false"))
.config("spark.shuffle.service.enabled", env.getProperty("spark.shuffle.service.enabled", "true"))
.config("spark.sql.adaptive.enabled", env.getProperty("spark.sql.adaptive.enabled", "true"))
.config("spark.sql.adaptive.shuffle.targetPostShuffleInputSize", env.getProperty("spark.sql.adaptive.shuffle.targetPostShuffleInputSize", "200M"))
.config("spark.sql.broadcastTimeout", env.getProperty("spark.sql.broadcastTimeout", "12000"))
.config("spark.sql.retainGroupColumns", env.getProperty("spark.sql.retainGroupColumns", "false"))
.config("spark.sql.sortMergeJoinExec.buffer.in.memory.threshold", env.getProperty("spark.sql.sortMergeJoinExec.buffer.in.memory.threshold", "100000"))
.config("spark.sql.sortMergeJoinExec.buffer.spill.threshold", env.getProperty("spark.sql.sortMergeJoinExec.buffer.spill.threshold", "100000"))
.config("spark.sql.variable.substitute", env.getProperty("spark.sql.variable.substitute", "false"))
.config("spark.temp.expired.time", env.getProperty("spark.temp.expired.time", "3600"))
.getOrCreate();
return spark;
}
// @Bean
// @ConditionalOnMissingBean
// public SparkSession javaSparkSession() {
// SparkSession spark = SparkSession.builder()
// .appName(env.getProperty("spark.appName", "DataeaseJob"))
// .master(env.getProperty("spark.master", "local[*]"))
// .config("spark.scheduler.mode", env.getProperty("spark.scheduler.mode", "FAIR"))
//// .config("spark.serializer", env.getProperty("spark.serializer", "org.apache.spark.serializer.KryoSerializer"))
//// .config("spark.executor.cores", env.getProperty("spark.executor.cores", "8"))
//// .config("spark.executor.memory", env.getProperty("spark.executor.memory", "6442450944b"))
//// .config("spark.locality.wait", env.getProperty("spark.locality.wait", "600000"))
//// .config("spark.maxRemoteBlockSizeFetchToMem", env.getProperty("spark.maxRemoteBlockSizeFetchToMem", "2000m"))
//// .config("spark.shuffle.detectCorrupt", env.getProperty("spark.shuffle.detectCorrupt", "false"))
//// .config("spark.shuffle.service.enabled", env.getProperty("spark.shuffle.service.enabled", "true"))
//// .config("spark.sql.adaptive.enabled", env.getProperty("spark.sql.adaptive.enabled", "true"))
//// .config("spark.sql.adaptive.shuffle.targetPostShuffleInputSize", env.getProperty("spark.sql.adaptive.shuffle.targetPostShuffleInputSize", "200M"))
//// .config("spark.sql.broadcastTimeout", env.getProperty("spark.sql.broadcastTimeout", "12000"))
//// .config("spark.sql.retainGroupColumns", env.getProperty("spark.sql.retainGroupColumns", "false"))
//// .config("spark.sql.sortMergeJoinExec.buffer.in.memory.threshold", env.getProperty("spark.sql.sortMergeJoinExec.buffer.in.memory.threshold", "100000"))
//// .config("spark.sql.sortMergeJoinExec.buffer.spill.threshold", env.getProperty("spark.sql.sortMergeJoinExec.buffer.spill.threshold", "100000"))
//// .config("spark.sql.variable.substitute", env.getProperty("spark.sql.variable.substitute", "false"))
//// .config("spark.temp.expired.time", env.getProperty("spark.temp.expired.time", "3600"))
// .getOrCreate();
// return spark;
// }
@Bean
@ConditionalOnMissingBean

View File

@ -1,21 +1,12 @@
package io.dataease.listener;
import io.dataease.base.domain.DatasetTable;
import io.dataease.base.domain.DatasetTableExample;
import io.dataease.base.domain.DatasetTableField;
import io.dataease.base.mapper.DatasetTableMapper;
import io.dataease.commons.utils.CommonThreadPool;
import io.dataease.datasource.service.DatasourceService;
import io.dataease.service.dataset.DataSetTableFieldsService;
import io.dataease.service.spark.SparkCalc;
import org.springframework.boot.context.event.ApplicationReadyEvent;
import org.springframework.context.ApplicationListener;
import org.springframework.core.annotation.Order;
import org.springframework.core.env.Environment;
import org.springframework.stereotype.Component;
import javax.annotation.Resource;
import java.util.List;
@Component
@Order(value = 2)

View File

@ -1,52 +1,47 @@
package io.dataease.listener;
import io.dataease.base.domain.DatasetTable;
import io.dataease.base.domain.DatasetTableExample;
import io.dataease.base.domain.DatasetTableField;
import io.dataease.base.mapper.DatasetTableMapper;
import io.dataease.commons.utils.CommonThreadPool;
import io.dataease.service.dataset.DataSetTableFieldsService;
import io.dataease.service.spark.SparkCalc;
import org.springframework.boot.context.event.ApplicationReadyEvent;
import org.springframework.context.ApplicationListener;
import org.springframework.core.annotation.Order;
import org.springframework.core.env.Environment;
import org.springframework.stereotype.Component;
import javax.annotation.Resource;
import java.util.List;
@Component
@Order(value = 2)
public class AppStartReadHBaseListener implements ApplicationListener<ApplicationReadyEvent> {
@Resource
private CommonThreadPool commonThreadPool;
@Resource
private SparkCalc sparkCalc;
@Resource
private Environment env; // 保存了配置文件的信息
@Resource
private DatasetTableMapper datasetTableMapper;
@Resource
private DataSetTableFieldsService dataSetTableFieldsService;
@Override
public void onApplicationEvent(ApplicationReadyEvent applicationReadyEvent) {
// System.out.println("================= Read HBase start =================");
// // 项目启动从数据集中找到定时抽取的表从HBase中读取放入缓存
// DatasetTableExample datasetTableExample = new DatasetTableExample();
// datasetTableExample.createCriteria().andModeEqualTo(1);
// List<DatasetTable> datasetTables = datasetTableMapper.selectByExampleWithBLOBs(datasetTableExample);
// for (DatasetTable table : datasetTables) {
//// commonThreadPool.addTask(() -> {
// try {
// List<DatasetTableField> fields = dataSetTableFieldsService.getFieldsByTableId(table.getId());
// sparkCalc.getHBaseDataAndCache(table.getId(), fields);
// } catch (Exception e) {
// e.printStackTrace();
// }
//// });
// }
}
}
//package io.dataease.listener;
//
//import io.dataease.base.mapper.DatasetTableMapper;
//import io.dataease.commons.utils.CommonThreadPool;
//import io.dataease.service.dataset.DataSetTableFieldsService;
//import org.springframework.boot.context.event.ApplicationReadyEvent;
//import org.springframework.context.ApplicationListener;
//import org.springframework.core.annotation.Order;
//import org.springframework.core.env.Environment;
//import org.springframework.stereotype.Component;
//
//import javax.annotation.Resource;
//
//@Component
//@Order(value = 2)
//public class AppStartReadHBaseListener implements ApplicationListener<ApplicationReadyEvent> {
// @Resource
// private CommonThreadPool commonThreadPool;
//// @Resource
//// private SparkCalc sparkCalc;
// @Resource
// private Environment env; // 保存了配置文件的信息
//
// @Resource
// private DatasetTableMapper datasetTableMapper;
// @Resource
// private DataSetTableFieldsService dataSetTableFieldsService;
//
// @Override
// public void onApplicationEvent(ApplicationReadyEvent applicationReadyEvent) {
//// System.out.println("================= Read HBase start =================");
//// // 项目启动从数据集中找到定时抽取的表从HBase中读取放入缓存
//// DatasetTableExample datasetTableExample = new DatasetTableExample();
//// datasetTableExample.createCriteria().andModeEqualTo(1);
//// List<DatasetTable> datasetTables = datasetTableMapper.selectByExampleWithBLOBs(datasetTableExample);
//// for (DatasetTable table : datasetTables) {
////// commonThreadPool.addTask(() -> {
//// try {
//// List<DatasetTableField> fields = dataSetTableFieldsService.getFieldsByTableId(table.getId());
//// sparkCalc.getHBaseDataAndCache(table.getId(), fields);
//// } catch (Exception e) {
//// e.printStackTrace();
//// }
////// });
//// }
// }
//}

View File

@ -1,11 +1,13 @@
package io.dataease.service.chart;
import com.alibaba.fastjson.JSONObject;
import com.google.gson.Gson;
import com.google.gson.reflect.TypeToken;
import io.dataease.base.domain.*;
import io.dataease.base.mapper.ChartViewMapper;
import io.dataease.commons.utils.AuthUtils;
import io.dataease.commons.utils.BeanUtils;
import io.dataease.commons.utils.CommonBeanFactory;
import io.dataease.controller.request.chart.ChartExtFilterRequest;
import io.dataease.controller.request.chart.ChartExtRequest;
import io.dataease.controller.request.chart.ChartViewRequest;
@ -20,7 +22,6 @@ import io.dataease.dto.chart.Series;
import io.dataease.dto.dataset.DataTableInfoDTO;
import io.dataease.service.dataset.DataSetTableFieldsService;
import io.dataease.service.dataset.DataSetTableService;
import io.dataease.service.spark.SparkCalc;
import org.apache.commons.collections4.CollectionUtils;
import org.apache.commons.lang3.ObjectUtils;
import org.apache.commons.lang3.StringUtils;
@ -43,8 +44,8 @@ public class ChartViewService {
private DataSetTableService dataSetTableService;
@Resource
private DatasourceService datasourceService;
@Resource
private SparkCalc sparkCalc;
// @Resource
// private SparkCalc sparkCalc;
@Resource
private DataSetTableFieldsService dataSetTableFieldsService;
@ -146,8 +147,18 @@ public class ChartViewService {
data = datasourceProvider.getData(datasourceRequest);
} else if (table.getMode() == 1) {// 抽取
// 获取数据集de字段
List<DatasetTableField> fields = dataSetTableFieldsService.getFieldsByTableId(table.getId());
data = sparkCalc.getData(table.getId(), fields, xAxis, yAxis, "tmp_" + view.getId().split("-")[0], extFilterList);
// List<DatasetTableField> fields = dataSetTableFieldsService.getFieldsByTableId(table.getId());
// data = sparkCalc.getData(table.getId(), fields, xAxis, yAxis, "tmp_" + view.getId().split("-")[0], extFilterList);
// 连接doris构建doris数据源查询
Datasource ds = dorisDatasource();
DatasourceProvider datasourceProvider = ProviderFactory.getProvider(ds.getType());
DatasourceRequest datasourceRequest = new DatasourceRequest();
datasourceRequest.setDatasource(ds);
String tableName = "ds_" + table.getId().replaceAll("-", "_");
datasourceRequest.setTable(tableName);
datasourceRequest.setQuery(getSQL(ds.getType(), tableName, xAxis, yAxis, extFilterList));
data = datasourceProvider.getData(datasourceRequest);
}
// 图表组件可再扩展
@ -214,6 +225,24 @@ public class ChartViewService {
return filter.toString();
}
public Datasource dorisDatasource() {
JSONObject jsonObject = new JSONObject();
jsonObject.put("dataSourceType", "jdbc");
jsonObject.put("dataBase", "example_db");
jsonObject.put("username", "root");
jsonObject.put("password", "dataease");
jsonObject.put("host", "59.110.64.159");
jsonObject.put("port", "9030");
Datasource datasource = new Datasource();
datasource.setId("doris");
datasource.setName("doris");
datasource.setDesc("doris");
datasource.setType("mysql");
datasource.setConfiguration(jsonObject.toJSONString());
return datasource;
}
public String getSQL(String type, String table, List<ChartViewFieldDTO> xAxis, List<ChartViewFieldDTO> yAxis, List<ChartExtFilterRequest> extFilterRequestList) {
DatasourceTypes datasourceType = DatasourceTypes.valueOf(type);
switch (datasourceType) {
@ -321,7 +350,7 @@ public class ChartViewService {
return map;
}
public List<ChartView> viewsByIds(List<String> viewIds){
public List<ChartView> viewsByIds(List<String> viewIds) {
ChartViewExample example = new ChartViewExample();
example.createCriteria().andIdIn(viewIds);
return chartViewMapper.selectByExample(example);

View File

@ -637,11 +637,12 @@ public class DataSetTableService {
private String saveFile(MultipartFile file) throws Exception {
String filename = file.getOriginalFilename();
File p = new File(path);
String dirPath = path + AuthUtils.getUser().getUsername() + "/";
File p = new File(dirPath);
if (!p.exists()) {
p.mkdirs();
}
String filePath = path + AuthUtils.getUser().getUsername() + "/" + filename;
String filePath = dirPath + filename;
File f = new File(filePath);
FileOutputStream fileOutputStream = new FileOutputStream(f);
fileOutputStream.write(file.getBytes());

View File

@ -1,7 +1,6 @@
package io.dataease.service.dataset;
import com.google.gson.Gson;
import com.sun.org.apache.bcel.internal.generic.SWITCH;
import io.dataease.base.domain.*;
import io.dataease.base.mapper.DatasourceMapper;
import io.dataease.commons.constants.JobStatus;
@ -13,31 +12,15 @@ import io.dataease.datasource.constants.DatasourceTypes;
import io.dataease.datasource.dto.MysqlConfigrationDTO;
import io.dataease.dto.dataset.DataSetTaskLogDTO;
import io.dataease.dto.dataset.DataTableInfoDTO;
import io.dataease.service.spark.SparkCalc;
import org.apache.commons.collections4.CollectionUtils;
import org.apache.commons.io.FileUtils;
import org.apache.commons.lang3.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.pentaho.big.data.api.cluster.NamedCluster;
import org.pentaho.big.data.api.cluster.NamedClusterService;
import org.pentaho.big.data.api.cluster.service.locator.NamedClusterServiceLocator;
import org.pentaho.big.data.api.cluster.service.locator.impl.NamedClusterServiceLocatorImpl;
import org.pentaho.big.data.api.initializer.ClusterInitializer;
import org.pentaho.big.data.api.initializer.ClusterInitializerProvider;
import org.pentaho.big.data.api.initializer.impl.ClusterInitializerImpl;
import org.pentaho.big.data.impl.cluster.NamedClusterImpl;
import org.pentaho.big.data.impl.cluster.NamedClusterManager;
import org.pentaho.big.data.kettle.plugins.hbase.MappingDefinition;
import org.pentaho.big.data.kettle.plugins.hbase.output.HBaseOutputMeta;
import org.apache.hadoop.hbase.client.Connection;
import org.pentaho.di.cluster.SlaveServer;
import org.pentaho.di.core.KettleEnvironment;
import org.pentaho.di.core.database.DatabaseMeta;
import org.pentaho.di.core.plugins.PluginRegistry;
import org.pentaho.di.core.plugins.StepPluginType;
import org.pentaho.di.core.util.EnvUtil;
import org.pentaho.di.engine.configuration.impl.pentaho.DefaultRunConfiguration;
import org.pentaho.di.job.Job;
import org.pentaho.di.job.JobExecutionConfiguration;
import org.pentaho.di.job.JobHopMeta;
@ -45,49 +28,25 @@ import org.pentaho.di.job.JobMeta;
import org.pentaho.di.job.entries.special.JobEntrySpecial;
import org.pentaho.di.job.entries.success.JobEntrySuccess;
import org.pentaho.di.job.entries.trans.JobEntryTrans;
import org.pentaho.di.job.entries.writetolog.JobEntryWriteToLog;
import org.pentaho.di.job.entry.JobEntryCopy;
import org.pentaho.di.repository.RepositoryDirectoryInterface;
import org.pentaho.di.repository.filerep.KettleFileRepository;
import org.pentaho.di.repository.filerep.KettleFileRepositoryMeta;
import org.pentaho.di.trans.TransConfiguration;
import org.pentaho.di.trans.TransExecutionConfiguration;
import org.pentaho.di.trans.TransHopMeta;
import org.pentaho.di.trans.TransMeta;
import org.pentaho.di.trans.step.StepMeta;
import org.pentaho.di.trans.steps.tableinput.TableInputMeta;
import org.pentaho.di.trans.steps.textfileoutput.TextFileField;
import org.pentaho.di.trans.steps.textfileoutput.TextFileOutput;
import org.pentaho.di.trans.steps.textfileoutput.TextFileOutputMeta;
import org.pentaho.di.trans.steps.userdefinedjavaclass.InfoStepDefinition;
import org.pentaho.di.trans.steps.userdefinedjavaclass.UserDefinedJavaClassDef;
import org.pentaho.di.trans.steps.userdefinedjavaclass.UserDefinedJavaClassMeta;
import org.pentaho.di.www.SlaveServerJobStatus;
import org.pentaho.runtime.test.RuntimeTest;
import org.pentaho.runtime.test.RuntimeTester;
import org.pentaho.runtime.test.action.RuntimeTestActionHandler;
import org.pentaho.runtime.test.action.RuntimeTestActionService;
import org.pentaho.runtime.test.action.impl.RuntimeTestActionServiceImpl;
import org.pentaho.runtime.test.impl.RuntimeTesterImpl;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Service;
import org.pentaho.di.core.row.ValueMetaInterface;
import scala.annotation.meta.field;
import javax.annotation.Resource;
import javax.sound.sampled.Line;
import java.io.File;
import java.security.MessageDigest;
import java.sql.ResultSet;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.List;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import static org.mockito.Mockito.mock;
@Service
public class ExtractDataService {
@ -125,8 +84,8 @@ public class ExtractDataService {
@Value("${hbase.zookeeper.property.clientPort:2181}")
private String zkPort;
@Resource
private SparkCalc sparkCalc;
// @Resource
// private SparkCalc sparkCalc;
public void extractData(String datasetTableId, String taskId, String type) {

View File

@ -1,308 +1,407 @@
package io.dataease.service.spark;
import io.dataease.base.domain.DatasetTableField;
import io.dataease.commons.utils.CommonBeanFactory;
import io.dataease.controller.request.chart.ChartExtFilterRequest;
import io.dataease.dto.chart.ChartViewFieldDTO;
import org.apache.commons.collections4.CollectionUtils;
import org.apache.commons.lang3.ObjectUtils;
import org.apache.commons.lang3.StringUtils;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableInputFormat;
import org.apache.hadoop.hbase.protobuf.ProtobufUtil;
import org.apache.hadoop.hbase.protobuf.generated.ClientProtos;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.sql.*;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.storage.StorageLevel;
import org.springframework.core.env.Environment;
import org.springframework.stereotype.Service;
import scala.Tuple2;
import javax.annotation.Resource;
import java.text.MessageFormat;
import java.util.ArrayList;
import java.util.Base64;
import java.util.Iterator;
import java.util.List;
/**
* @Author gin
* @Date 2021/3/26 3:49 下午
*/
@Service
public class SparkCalc {
private static String column_family = "dataease";
private static String data_path = "/opt/dataease/data/db/";
@Resource
private Environment env; // 保存了配置文件的信息
public List<String[]> getData(String hTable, List<DatasetTableField> fields, List<ChartViewFieldDTO> xAxis, List<ChartViewFieldDTO> yAxis, String tmpTable, List<ChartExtFilterRequest> requestList) throws Exception {
// Spark Context
SparkSession spark = CommonBeanFactory.getBean(SparkSession.class);
JavaSparkContext sparkContext = new JavaSparkContext(spark.sparkContext());
// Spark SQL Context
SQLContext sqlContext = new SQLContext(sparkContext);
sqlContext.setConf("spark.sql.shuffle.partitions", env.getProperty("spark.sql.shuffle.partitions", "1"));
sqlContext.setConf("spark.default.parallelism", env.getProperty("spark.default.parallelism", "1"));
Dataset<Row> dataFrame = getData(sparkContext, sqlContext, hTable, fields);
//package io.dataease.service.spark;
//
//import io.dataease.base.domain.DatasetTableField;
//import io.dataease.commons.utils.CommonBeanFactory;
//import io.dataease.controller.request.chart.ChartExtFilterRequest;
//import io.dataease.dto.chart.ChartViewFieldDTO;
//import org.antlr.analysis.MachineProbe;
//import org.apache.commons.collections4.CollectionUtils;
//import org.apache.commons.lang3.ObjectUtils;
//import org.apache.commons.lang3.StringUtils;
//import org.apache.hadoop.hbase.client.Result;
//import org.apache.hadoop.hbase.client.Scan;
//import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
//import org.apache.hadoop.hbase.mapreduce.TableInputFormat;
//import org.apache.hadoop.hbase.protobuf.ProtobufUtil;
//import org.apache.hadoop.hbase.protobuf.generated.ClientProtos;
//import org.apache.hadoop.hbase.util.Bytes;
//import org.apache.spark.api.java.JavaPairRDD;
//import org.apache.spark.api.java.JavaRDD;
//import org.apache.spark.api.java.JavaSparkContext;
//import org.apache.spark.api.java.function.FlatMapFunction;
//import org.apache.spark.api.java.function.Function;
//import org.apache.spark.sql.*;
//import org.apache.spark.sql.types.DataTypes;
//import org.apache.spark.sql.types.StructField;
//import org.apache.spark.sql.types.StructType;
//import org.apache.spark.storage.StorageLevel;
//import org.springframework.core.env.Environment;
//import org.springframework.stereotype.Service;
//import scala.Tuple2;
//
//import javax.annotation.Resource;
//import java.math.BigDecimal;
//import java.text.MessageFormat;
//import java.util.*;
//
///**
// * @Author gin
// * @Date 2021/3/26 3:49 下午
// */
//@Service
//public class SparkCalc {
// private static String column_family = "dataease";
// private static String data_path = "/opt/dataease/data/db/";
// @Resource
// private Environment env; // 保存了配置文件的信息
//
// public List<String[]> getData(String hTable, List<DatasetTableField> fields, List<ChartViewFieldDTO> xAxis, List<ChartViewFieldDTO> yAxis, String tmpTable, List<ChartExtFilterRequest> requestList) throws Exception {
// // Spark Context
// SparkSession spark = CommonBeanFactory.getBean(SparkSession.class);
// JavaSparkContext sparkContext = new JavaSparkContext(spark.sparkContext());
//
// // Spark SQL Context
// SQLContext sqlContext = new SQLContext(sparkContext);
// sqlContext.setConf("spark.sql.shuffle.partitions", env.getProperty("spark.sql.shuffle.partitions", "1"));
// sqlContext.setConf("spark.default.parallelism", env.getProperty("spark.default.parallelism", "1"));
//
// /*Map<String, BigDecimal> dataFrame = getData(sparkContext, sqlContext, hTable, fields);
// List<String[]> data = new ArrayList<>();
// Iterator<Map.Entry<String, BigDecimal>> iterator = dataFrame.entrySet().iterator();
// while (iterator.hasNext()) {
// String[] r = new String[2];
// Map.Entry<String, BigDecimal> next = iterator.next();
// String key = next.getKey();
// BigDecimal value = next.getValue();
// r[0] = key;
// r[1] = value.toString();
// data.add(r);
// }*/
//
//// Dataset<Row> dataFrame = getData(sparkContext, sqlContext, hTable, fields);
// Dataset<Row> dataFrame = CacheUtil.getInstance().getCacheData(hTable);
// if (ObjectUtils.isEmpty(dataFrame)) {
// dataFrame = getData(sparkContext, sqlContext, hTable, fields);
// dataFrame = getHBaseDataAndCache(sparkContext, sqlContext, hTable, fields);
// }
dataFrame.createOrReplaceTempView( tmpTable);
Dataset<Row> sql = sqlContext.sql(getSQL(xAxis, yAxis, tmpTable, requestList));
// transform
List<String[]> data = new ArrayList<>();
List<Row> list = sql.collectAsList();
for (Row row : list) {
String[] r = new String[row.length()];
for (int i = 0; i < row.length(); i++) {
r[i] = row.get(i) == null ? "null" : row.get(i).toString();
}
data.add(r);
}
return data;
}
public Dataset<Row> getHBaseDataAndCache(String hTable, List<DatasetTableField> fields) throws Exception {
// Spark Context
SparkSession spark = CommonBeanFactory.getBean(SparkSession.class);
JavaSparkContext sparkContext = new JavaSparkContext(spark.sparkContext());
// Spark SQL Context
SQLContext sqlContext = new SQLContext(sparkContext);
sqlContext.setConf("spark.sql.shuffle.partitions", env.getProperty("spark.sql.shuffle.partitions", "1"));
sqlContext.setConf("spark.default.parallelism", env.getProperty("spark.default.parallelism", "1"));
return getHBaseDataAndCache(sparkContext, sqlContext, hTable, fields);
}
public Dataset<Row> getData(JavaSparkContext sparkContext, SQLContext sqlContext, String tableId, List<DatasetTableField> fields) throws Exception {
fields.sort((o1, o2) -> {
if (o1.getOriginName() == null) {
return -1;
}
if (o2.getOriginName() == null) {
return 1;
}
return o1.getOriginName().compareTo(o2.getOriginName());
});
JavaRDD<String> pairRDD = sparkContext.textFile(data_path + tableId + ".txt");
JavaRDD<Row> rdd = pairRDD.mapPartitions( (FlatMapFunction<java.util.Iterator<String>, Row>) tuple2Iterator -> {
List<Row> iterator = new ArrayList<>();
while (tuple2Iterator.hasNext()) {
String[] items = tuple2Iterator.next().split(";");
List<Object> list = new ArrayList<>();
for(int i=0; i<items.length; i++){
String l = items[i];
DatasetTableField x = fields.get(i);
if (x.getDeType() == 0 || x.getDeType() == 1) {
list.add(l);
} else if (x.getDeType() == 2) {
if (StringUtils.isEmpty(l)) {
l = "0";
}
if (StringUtils.equalsIgnoreCase(l,"Y")) {
l = "1";
}
if (StringUtils.equalsIgnoreCase(l,"N")) {
l = "0";
}
list.add(Long.valueOf(l));
} else if (x.getDeType() == 3) {
if (StringUtils.isEmpty(l)) {
l = "0.0";
}
list.add(Double.valueOf(l));
}
}
iterator.add(RowFactory.create(list.toArray()));
}
return iterator.iterator();
});
List<StructField> structFields = new ArrayList<>();
// struct顺序要与rdd顺序一致
fields.forEach(x -> {
if (x.getDeType() == 0 || x.getDeType() == 1) {
structFields.add(DataTypes.createStructField(x.getOriginName(), DataTypes.StringType, true));
} else if (x.getDeType() == 2) {
structFields.add(DataTypes.createStructField(x.getOriginName(), DataTypes.LongType, true));
} else if (x.getDeType() == 3) {
structFields.add(DataTypes.createStructField(x.getOriginName(), DataTypes.DoubleType, true));
}
});
StructType structType = DataTypes.createStructType(structFields);
Dataset<Row> dataFrame = sqlContext.createDataFrame(rdd, structType);
return dataFrame;
}
public Dataset<Row> getHBaseDataAndCache(JavaSparkContext sparkContext, SQLContext sqlContext, String hTable, List<DatasetTableField> fields) throws Exception {
Scan scan = new Scan();
scan.addFamily(Bytes.toBytes(column_family));
for (DatasetTableField field : fields) {
scan.addColumn(Bytes.toBytes(column_family), Bytes.toBytes(field.getOriginName()));
}
ClientProtos.Scan proto = ProtobufUtil.toScan(scan);
String scanToString = new String(Base64.getEncoder().encode(proto.toByteArray()));
// HBase config
org.apache.hadoop.conf.Configuration conf = new org.apache.hadoop.conf.Configuration();
conf.set("hbase.zookeeper.quorum", env.getProperty("hbase.zookeeper.quorum"));
conf.set("hbase.zookeeper.property.clientPort", env.getProperty("hbase.zookeeper.property.clientPort"));
conf.set("hbase.client.retries.number", env.getProperty("hbase.client.retries.number", "1"));
conf.set(TableInputFormat.INPUT_TABLE, hTable);
conf.set(TableInputFormat.SCAN, scanToString);
JavaPairRDD<ImmutableBytesWritable, Result> pairRDD = sparkContext.newAPIHadoopRDD(conf, TableInputFormat.class, ImmutableBytesWritable.class, Result.class);
JavaRDD<Row> rdd = pairRDD.mapPartitions((FlatMapFunction<Iterator<Tuple2<ImmutableBytesWritable, Result>>, Row>) tuple2Iterator -> {
List<Row> iterator = new ArrayList<>();
while (tuple2Iterator.hasNext()) {
Result result = tuple2Iterator.next()._2;
List<Object> list = new ArrayList<>();
fields.forEach(x -> {
String l = Bytes.toString(result.getValue(column_family.getBytes(), x.getOriginName().getBytes()));
if (x.getDeType() == 0 || x.getDeType() == 1) {
list.add(l);
} else if (x.getDeType() == 2) {
if (StringUtils.isEmpty(l)) {
l = "0";
}
list.add(Long.valueOf(l));
} else if (x.getDeType() == 3) {
if (StringUtils.isEmpty(l)) {
l = "0.0";
}
list.add(Double.valueOf(l));
}
});
iterator.add(RowFactory.create(list.toArray()));
}
return iterator.iterator();
});
List<StructField> structFields = new ArrayList<>();
// struct顺序要与rdd顺序一致
fields.forEach(x -> {
if (x.getDeType() == 0 || x.getDeType() == 1) {
structFields.add(DataTypes.createStructField(x.getOriginName(), DataTypes.StringType, true));
} else if (x.getDeType() == 2) {
structFields.add(DataTypes.createStructField(x.getOriginName(), DataTypes.LongType, true));
} else if (x.getDeType() == 3) {
structFields.add(DataTypes.createStructField(x.getOriginName(), DataTypes.DoubleType, true));
}
});
StructType structType = DataTypes.createStructType(structFields);
Dataset<Row> dataFrame = sqlContext.createDataFrame(rdd, structType).persist(StorageLevel.MEMORY_AND_DISK_SER());
//
// dataFrame.createOrReplaceTempView(tmpTable);
// Dataset<Row> sql = sqlContext.sql(getSQL(xAxis, yAxis, tmpTable, requestList));
// // transform
// List<String[]> data = new ArrayList<>();
// List<Row> list = sql.collectAsList();
// for (Row row : list) {
// String[] r = new String[row.length()];
// for (int i = 0; i < row.length(); i++) {
// r[i] = row.get(i) == null ? "null" : row.get(i).toString();
// }
// data.add(r);
// }
// return data;
// }
//
// public Dataset<Row> getHBaseDataAndCache(String hTable, List<DatasetTableField> fields) throws Exception {
// // Spark Context
// SparkSession spark = CommonBeanFactory.getBean(SparkSession.class);
// JavaSparkContext sparkContext = new JavaSparkContext(spark.sparkContext());
//
// // Spark SQL Context
// SQLContext sqlContext = new SQLContext(sparkContext);
// sqlContext.setConf("spark.sql.shuffle.partitions", env.getProperty("spark.sql.shuffle.partitions", "1"));
// sqlContext.setConf("spark.default.parallelism", env.getProperty("spark.default.parallelism", "1"));
// return getHBaseDataAndCache(sparkContext, sqlContext, hTable, fields);
// }
//
// public Map<String, BigDecimal> getData(JavaSparkContext sparkContext, SQLContext sqlContext, String tableId, List<DatasetTableField> fields) throws Exception {
// fields.sort((o1, o2) -> {
// if (o1.getOriginName() == null) {
// return -1;
// }
// if (o2.getOriginName() == null) {
// return 1;
// }
// return o1.getOriginName().compareTo(o2.getOriginName());
// });
//
// JavaRDD<String> pairRDD = sparkContext.textFile(data_path + tableId + ".txt");
//// System.out.println(pairRDD.count());
//
//// JavaRDD<Map.Entry<String, BigDecimal>> rdd = pairRDD.map((Function<String, Map.Entry<String, BigDecimal>>) v1 -> {
//// Map<String, BigDecimal> map = new HashMap<>();
//// String[] items = v1.split(";");
//// String day = null;
//// BigDecimal res = new BigDecimal(0);
//// for (int i = 0; i < items.length; i++) {
//// String l = items[i];
//// DatasetTableField x = fields.get(i);
//// if (x.getOriginName().equalsIgnoreCase("sync_day")) {
//// day = l;
//// }
//// if (x.getOriginName().equalsIgnoreCase("usage_cost")) {
//// res = new BigDecimal(l);
//// }
//// }
//// BigDecimal bigDecimal = map.get(day);
//// if (bigDecimal == null) {
//// map.put(day, res);
//// } else {
//// map.put(day, bigDecimal.add(res));
//// }
//// return map.entrySet().iterator().next();
//// });
//
// JavaRDD<Map.Entry<String, BigDecimal>> rdd = pairRDD.mapPartitions((FlatMapFunction<java.util.Iterator<String>, Map.Entry<String, BigDecimal>>) tuple2Iterator -> {
// Map<String, BigDecimal> map = new HashMap<>();
// while (tuple2Iterator.hasNext()) {
// String[] items = tuple2Iterator.next().split(";");
// String day = null;
// BigDecimal res = new BigDecimal(0);
// for (int i = 0; i < items.length; i++) {
// String l = items[i];
// DatasetTableField x = fields.get(i);
// if (x.getOriginName().equalsIgnoreCase("sync_day")) {
// day = l;
// }
// if (x.getOriginName().equalsIgnoreCase("usage_cost")) {
// res = new BigDecimal(l);
// }
// }
// BigDecimal bigDecimal = map.get(day);
// if (bigDecimal == null) {
// map.put(day, res);
// } else {
// map.put(day, bigDecimal.add(res));
// }
// }
// return map.entrySet().iterator();
// });
//
//
//// System.out.println(rdd.count());
//
// Map<String, BigDecimal> map = new HashMap<>();
// List<Map.Entry<String, BigDecimal>> collect = rdd.collect();
//// System.out.println(collect.size());
//
// collect.forEach(stringBigDecimalEntry -> {
// String key = stringBigDecimalEntry.getKey();
// BigDecimal value = stringBigDecimalEntry.getValue();
//
// BigDecimal bigDecimal = map.get(key);
// if (bigDecimal == null) {
// map.put(key, value);
// } else {
// map.put(key, bigDecimal.add(value));
// }
// });
//
// return map;
// }
//
//// public Dataset<Row> getData(JavaSparkContext sparkContext, SQLContext sqlContext, String tableId, List<DatasetTableField> fields) throws Exception {
//// fields.sort((o1, o2) -> {
//// if (o1.getOriginName() == null) {
//// return -1;
//// }
//// if (o2.getOriginName() == null) {
//// return 1;
//// }
//// return o1.getOriginName().compareTo(o2.getOriginName());
//// });
////
//// JavaRDD<String> pairRDD = sparkContext.textFile(data_path + tableId + ".txt");
////
//// JavaRDD<Row> rdd = pairRDD.mapPartitions((FlatMapFunction<java.util.Iterator<String>, Row>) tuple2Iterator -> {
//// List<Row> iterator = new ArrayList<>();
//// while (tuple2Iterator.hasNext()) {
//// String[] items = tuple2Iterator.next().split(";");
//// List<Object> list = new ArrayList<>();
//// for (int i = 0; i < items.length; i++) {
//// String l = items[i];
//// DatasetTableField x = fields.get(i);
//// if (x.getDeType() == 0 || x.getDeType() == 1) {
//// list.add(l);
//// } else if (x.getDeType() == 2) {
//// if (StringUtils.isEmpty(l)) {
//// l = "0";
//// }
//// if (StringUtils.equalsIgnoreCase(l, "Y")) {
//// l = "1";
//// }
//// if (StringUtils.equalsIgnoreCase(l, "N")) {
//// l = "0";
//// }
//// list.add(Long.valueOf(l));
//// } else if (x.getDeType() == 3) {
//// if (StringUtils.isEmpty(l)) {
//// l = "0.0";
//// }
//// list.add(Double.valueOf(l));
//// }
//// }
//// iterator.add(RowFactory.create(list.toArray()));
//// }
//// return iterator.iterator();
//// });
////
//// List<StructField> structFields = new ArrayList<>();
//// // struct顺序要与rdd顺序一致
//// fields.forEach(x -> {
//// if (x.getDeType() == 0 || x.getDeType() == 1) {
//// structFields.add(DataTypes.createStructField(x.getOriginName(), DataTypes.StringType, true));
//// } else if (x.getDeType() == 2) {
//// structFields.add(DataTypes.createStructField(x.getOriginName(), DataTypes.LongType, true));
//// } else if (x.getDeType() == 3) {
//// structFields.add(DataTypes.createStructField(x.getOriginName(), DataTypes.DoubleType, true));
//// }
//// });
//// StructType structType = DataTypes.createStructType(structFields);
////
//// Dataset<Row> dataFrame = sqlContext.createDataFrame(rdd, structType);
//// return dataFrame;
//// }
//
// public Dataset<Row> getHBaseDataAndCache(JavaSparkContext sparkContext, SQLContext sqlContext, String hTable, List<DatasetTableField> fields) throws Exception {
// Scan scan = new Scan();
// scan.addFamily(Bytes.toBytes(column_family));
// for (DatasetTableField field : fields) {
// scan.addColumn(Bytes.toBytes(column_family), Bytes.toBytes(field.getOriginName()));
// }
// ClientProtos.Scan proto = ProtobufUtil.toScan(scan);
// String scanToString = new String(Base64.getEncoder().encode(proto.toByteArray()));
//
// // HBase config
// org.apache.hadoop.conf.Configuration conf = new org.apache.hadoop.conf.Configuration();
// conf.set("hbase.zookeeper.quorum", env.getProperty("hbase.zookeeper.quorum"));
// conf.set("hbase.zookeeper.property.clientPort", env.getProperty("hbase.zookeeper.property.clientPort"));
// conf.set("hbase.client.retries.number", env.getProperty("hbase.client.retries.number", "1"));
// conf.set(TableInputFormat.INPUT_TABLE, hTable);
// conf.set(TableInputFormat.SCAN, scanToString);
//
// JavaPairRDD<ImmutableBytesWritable, Result> pairRDD = sparkContext.newAPIHadoopRDD(conf, TableInputFormat.class, ImmutableBytesWritable.class, Result.class);
//
// JavaRDD<Row> rdd = pairRDD.mapPartitions((FlatMapFunction<Iterator<Tuple2<ImmutableBytesWritable, Result>>, Row>) tuple2Iterator -> {
// List<Row> iterator = new ArrayList<>();
// while (tuple2Iterator.hasNext()) {
// Result result = tuple2Iterator.next()._2;
// List<Object> list = new ArrayList<>();
// fields.forEach(x -> {
// String l = Bytes.toString(result.getValue(column_family.getBytes(), x.getOriginName().getBytes()));
// if (x.getDeType() == 0 || x.getDeType() == 1) {
// list.add(l);
// } else if (x.getDeType() == 2) {
// if (StringUtils.isEmpty(l)) {
// l = "0";
// }
// list.add(Long.valueOf(l));
// } else if (x.getDeType() == 3) {
// if (StringUtils.isEmpty(l)) {
// l = "0.0";
// }
// list.add(Double.valueOf(l));
// }
// });
// iterator.add(RowFactory.create(list.toArray()));
// }
// return iterator.iterator();
// });
//
// List<StructField> structFields = new ArrayList<>();
// // struct顺序要与rdd顺序一致
// fields.forEach(x -> {
// if (x.getDeType() == 0 || x.getDeType() == 1) {
// structFields.add(DataTypes.createStructField(x.getOriginName(), DataTypes.StringType, true));
// } else if (x.getDeType() == 2) {
// structFields.add(DataTypes.createStructField(x.getOriginName(), DataTypes.LongType, true));
// } else if (x.getDeType() == 3) {
// structFields.add(DataTypes.createStructField(x.getOriginName(), DataTypes.DoubleType, true));
// }
// });
// StructType structType = DataTypes.createStructType(structFields);
//
// Dataset<Row> dataFrame = sqlContext.createDataFrame(rdd, structType).persist(StorageLevel.MEMORY_AND_DISK_SER());
// CacheUtil.getInstance().addCacheData(hTable, dataFrame);
dataFrame.count();
return dataFrame;
}
public String getSQL(List<ChartViewFieldDTO> xAxis, List<ChartViewFieldDTO> yAxis, String table, List<ChartExtFilterRequest> extFilterRequestList) {
// 字段汇总 排序等
String[] field = yAxis.stream().map(y -> "CAST(" + y.getSummary() + "(" + y.getOriginName() + ") AS DECIMAL(20,2)) AS _" + y.getSummary() + "_" + y.getOriginName()).toArray(String[]::new);
String[] group = xAxis.stream().map(ChartViewFieldDTO::getOriginName).toArray(String[]::new);
String[] order = yAxis.stream().filter(y -> StringUtils.isNotEmpty(y.getSort()) && !StringUtils.equalsIgnoreCase(y.getSort(), "none"))
.map(y -> "_" + y.getSummary() + "_" + y.getOriginName() + " " + y.getSort()).toArray(String[]::new);
String sql = MessageFormat.format("SELECT {0},{1} FROM {2} WHERE 1=1 {3} GROUP BY {4} ORDER BY null,{5}",
StringUtils.join(group, ","),
StringUtils.join(field, ","),
table,
transExtFilter(extFilterRequestList),// origin field filter and panel field filter,
StringUtils.join(group, ","),
StringUtils.join(order, ","));
if (sql.endsWith(",")) {
sql = sql.substring(0, sql.length() - 1);
}
// 如果是对结果字段过滤则再包裹一层sql
String[] resultFilter = yAxis.stream().filter(y -> CollectionUtils.isNotEmpty(y.getFilter()) && y.getFilter().size() > 0)
.map(y -> {
String[] s = y.getFilter().stream().map(f -> "AND _" + y.getSummary() + "_" + y.getOriginName() + transFilterTerm(f.getTerm()) + f.getValue()).toArray(String[]::new);
return StringUtils.join(s, " ");
}).toArray(String[]::new);
if (resultFilter.length == 0) {
return sql;
} else {
String filterSql = MessageFormat.format("SELECT * FROM {0} WHERE 1=1 {1}",
"(" + sql + ") AS tmp",
StringUtils.join(resultFilter, " "));
return filterSql;
}
}
public String transFilterTerm(String term) {
switch (term) {
case "eq":
return " = ";
case "not_eq":
return " <> ";
case "lt":
return " < ";
case "le":
return " <= ";
case "gt":
return " > ";
case "ge":
return " >= ";
case "in":
return " IN ";
case "not in":
return " NOT IN ";
case "like":
return " LIKE ";
case "not like":
return " NOT LIKE ";
case "null":
return " IS NULL ";
case "not_null":
return " IS NOT NULL ";
default:
return "";
}
}
public String transExtFilter(List<ChartExtFilterRequest> requestList) {
if (CollectionUtils.isEmpty(requestList)) {
return "";
}
StringBuilder filter = new StringBuilder();
for (ChartExtFilterRequest request : requestList) {
List<String> value = request.getValue();
if (CollectionUtils.isEmpty(value)) {
continue;
}
DatasetTableField field = request.getDatasetTableField();
filter.append(" AND ")
.append(field.getOriginName())
.append(" ")
.append(transFilterTerm(request.getOperator()))
.append(" ");
if (StringUtils.containsIgnoreCase(request.getOperator(), "in")) {
filter.append("('").append(StringUtils.join(value, "','")).append("')");
} else if (StringUtils.containsIgnoreCase(request.getOperator(), "like")) {
filter.append("'%").append(value.get(0)).append("%'");
} else {
filter.append("'").append(value.get(0)).append("'");
}
}
return filter.toString();
}
}
// dataFrame.count();
// return dataFrame;
// }
//
// public String getSQL(List<ChartViewFieldDTO> xAxis, List<ChartViewFieldDTO> yAxis, String table, List<ChartExtFilterRequest> extFilterRequestList) {
// // 字段汇总 排序等
// String[] field = yAxis.stream().map(y -> "CAST(" + y.getSummary() + "(" + y.getOriginName() + ") AS DECIMAL(20,2)) AS _" + y.getSummary() + "_" + y.getOriginName()).toArray(String[]::new);
// String[] group = xAxis.stream().map(ChartViewFieldDTO::getOriginName).toArray(String[]::new);
// String[] order = yAxis.stream().filter(y -> StringUtils.isNotEmpty(y.getSort()) && !StringUtils.equalsIgnoreCase(y.getSort(), "none"))
// .map(y -> "_" + y.getSummary() + "_" + y.getOriginName() + " " + y.getSort()).toArray(String[]::new);
//
// String sql = MessageFormat.format("SELECT {0},{1} FROM {2} WHERE 1=1 {3} GROUP BY {4} ORDER BY null,{5}",
// StringUtils.join(group, ","),
// StringUtils.join(field, ","),
// table,
// transExtFilter(extFilterRequestList),// origin field filter and panel field filter,
// StringUtils.join(group, ","),
// StringUtils.join(order, ","));
// if (sql.endsWith(",")) {
// sql = sql.substring(0, sql.length() - 1);
// }
// // 如果是对结果字段过滤则再包裹一层sql
// String[] resultFilter = yAxis.stream().filter(y -> CollectionUtils.isNotEmpty(y.getFilter()) && y.getFilter().size() > 0)
// .map(y -> {
// String[] s = y.getFilter().stream().map(f -> "AND _" + y.getSummary() + "_" + y.getOriginName() + transFilterTerm(f.getTerm()) + f.getValue()).toArray(String[]::new);
// return StringUtils.join(s, " ");
// }).toArray(String[]::new);
// if (resultFilter.length == 0) {
// return sql;
// } else {
// String filterSql = MessageFormat.format("SELECT * FROM {0} WHERE 1=1 {1}",
// "(" + sql + ") AS tmp",
// StringUtils.join(resultFilter, " "));
// return filterSql;
// }
// }
//
// public String transFilterTerm(String term) {
// switch (term) {
// case "eq":
// return " = ";
// case "not_eq":
// return " <> ";
// case "lt":
// return " < ";
// case "le":
// return " <= ";
// case "gt":
// return " > ";
// case "ge":
// return " >= ";
// case "in":
// return " IN ";
// case "not in":
// return " NOT IN ";
// case "like":
// return " LIKE ";
// case "not like":
// return " NOT LIKE ";
// case "null":
// return " IS NULL ";
// case "not_null":
// return " IS NOT NULL ";
// default:
// return "";
// }
// }
//
// public String transExtFilter(List<ChartExtFilterRequest> requestList) {
// if (CollectionUtils.isEmpty(requestList)) {
// return "";
// }
// StringBuilder filter = new StringBuilder();
// for (ChartExtFilterRequest request : requestList) {
// List<String> value = request.getValue();
// if (CollectionUtils.isEmpty(value)) {
// continue;
// }
// DatasetTableField field = request.getDatasetTableField();
// filter.append(" AND ")
// .append(field.getOriginName())
// .append(" ")
// .append(transFilterTerm(request.getOperator()))
// .append(" ");
// if (StringUtils.containsIgnoreCase(request.getOperator(), "in")) {
// filter.append("('").append(StringUtils.join(value, "','")).append("')");
// } else if (StringUtils.containsIgnoreCase(request.getOperator(), "like")) {
// filter.append("'%").append(value.get(0)).append("%'");
// } else {
// filter.append("'").append(value.get(0)).append("'");
// }
// }
// return filter.toString();
// }
//}

View File

@ -600,8 +600,8 @@ export default {
avg: '平均',
max: '最大值',
min: '最小值',
std: '标准差',
var_samp: '方差',
stddev_pop: '标准差',
var_pop: '方差',
quick_calc: '快速计算',
show_name_set: '显示名设置',
color: '颜色',

View File

@ -22,8 +22,8 @@
<el-dropdown-item :command="beforeSummary('avg')">{{ $t('chart.avg') }}</el-dropdown-item>
<el-dropdown-item :command="beforeSummary('max')">{{ $t('chart.max') }}</el-dropdown-item>
<el-dropdown-item :command="beforeSummary('min')">{{ $t('chart.min') }}</el-dropdown-item>
<el-dropdown-item :command="beforeSummary('std')">{{ $t('chart.std') }}</el-dropdown-item>
<el-dropdown-item :command="beforeSummary('var_samp')">{{ $t('chart.var_samp') }}</el-dropdown-item>
<el-dropdown-item :command="beforeSummary('stddev_pop')">{{ $t('chart.stddev_pop') }}</el-dropdown-item>
<el-dropdown-item :command="beforeSummary('var_pop')">{{ $t('chart.var_pop') }}</el-dropdown-item>
</el-dropdown-menu>
</el-dropdown>
</el-dropdown-item>