// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:generate go run gen.go gen_common.go -output tables.go //go:generate go run gen_index.go // Package language implements BCP 47 language tags and related functionality. // // The Tag type, which is used to represent languages, is agnostic to the // meaning of its subtags. Tags are not fully canonicalized to preserve // information that may be valuable in certain contexts. As a consequence, two // different tags may represent identical languages. // // Initializing language- or locale-specific components usually consists of // two steps. The first step is to select a display language based on the // preferred languages of the user and the languages supported by an application. // The second step is to create the language-specific services based on // this selection. Each is discussed in more details below. // // Matching preferred against supported languages // // An application may support various languages. This list is typically limited // by the languages for which there exists translations of the user interface. // Similarly, a user may provide a list of preferred languages which is limited // by the languages understood by this user. // An application should use a Matcher to find the best supported language based // on the user's preferred list. // Matchers are aware of the intricacies of equivalence between languages. // The default Matcher implementation takes into account things such as // deprecated subtags, legacy tags, and mutual intelligibility between scripts // and languages. // // A Matcher for English, Australian English, Danish, and standard Mandarin can // be defined as follows: // // var matcher = language.NewMatcher([]language.Tag{ // language.English, // The first language is used as fallback. // language.MustParse("en-AU"), // language.Danish, // language.Chinese, // }) // // The following code selects the best match for someone speaking Spanish and // Norwegian: // // preferred := []language.Tag{ language.Spanish, language.Norwegian } // tag, _, _ := matcher.Match(preferred...) // // In this case, the best match is Danish, as Danish is sufficiently a match to // Norwegian to not have to fall back to the default. // See ParseAcceptLanguage on how to handle the Accept-Language HTTP header. // // Selecting language-specific services // // One should always use the Tag returned by the Matcher to create an instance // of any of the language-specific services provided by the text repository. // This prevents the mixing of languages, such as having a different language for // messages and display names, as well as improper casing or sorting order for // the selected language. // Using the returned Tag also allows user-defined settings, such as collation // order or numbering system to be transparently passed as options. // // If you have language-specific data in your application, however, it will in // most cases suffice to use the index returned by the matcher to identify // the user language. // The following loop provides an alternative in case this is not sufficient: // // supported := map[language.Tag]data{ // language.English: enData, // language.MustParse("en-AU"): enAUData, // language.Danish: daData, // language.Chinese: zhData, // } // tag, _, _ := matcher.Match(preferred...) // for ; tag != language.Und; tag = tag.Parent() { // if v, ok := supported[tag]; ok { // return v // } // } // return enData // should not reach here // // Repeatedly taking the Parent of the tag returned by Match will eventually // match one of the tags used to initialize the Matcher. // // Canonicalization // // By default, only legacy and deprecated tags are converted into their // canonical equivalent. All other information is preserved. This approach makes // the confidence scores more accurate and allows matchers to distinguish // between variants that are otherwise lost. // // As a consequence, two tags that should be treated as identical according to // BCP 47 or CLDR, like "en-Latn" and "en", will be represented differently. The // Matchers will handle such distinctions, though, and are aware of the // equivalence relations. The CanonType type can be used to alter the // canonicalization form. // // References // // BCP 47 - Tags for Identifying Languages // http://tools.ietf.org/html/bcp47 package language // TODO: Remove above NOTE after: // - verifying that tables are dropped correctly (most notably matcher tables). import ( "errors" "fmt" "strings" ) const ( // maxCoreSize is the maximum size of a BCP 47 tag without variants and // extensions. Equals max lang (3) + script (4) + max reg (3) + 2 dashes. maxCoreSize = 12 // max99thPercentileSize is a somewhat arbitrary buffer size that presumably // is large enough to hold at least 99% of the BCP 47 tags. max99thPercentileSize = 32 // maxSimpleUExtensionSize is the maximum size of a -u extension with one // key-type pair. Equals len("-u-") + key (2) + dash + max value (8). maxSimpleUExtensionSize = 14 ) // Tag represents a BCP 47 language tag. It is used to specify an instance of a // specific language or locale. All language tag values are guaranteed to be // well-formed. type Tag struct { lang langID region regionID // TODO: we will soon run out of positions for script. Idea: instead of // storing lang, region, and script codes, store only the compact index and // have a lookup table from this code to its expansion. This greatly speeds // up table lookup, speed up common variant cases. // This will also immediately free up 3 extra bytes. Also, the pVariant // field can now be moved to the lookup table, as the compact index uniquely // determines the offset of a possible variant. script scriptID pVariant byte // offset in str, includes preceding '-' pExt uint16 // offset of first extension, includes preceding '-' // str is the string representation of the Tag. It will only be used if the // tag has variants or extensions. str string } // Make is a convenience wrapper for Parse that omits the error. // In case of an error, a sensible default is returned. func Make(s string) Tag { return Default.Make(s) } // Make is a convenience wrapper for c.Parse that omits the error. // In case of an error, a sensible default is returned. func (c CanonType) Make(s string) Tag { t, _ := c.Parse(s) return t } // Raw returns the raw base language, script and region, without making an // attempt to infer their values. func (t Tag) Raw() (b Base, s Script, r Region) { return Base{t.lang}, Script{t.script}, Region{t.region} } // equalTags compares language, script and region subtags only. func (t Tag) equalTags(a Tag) bool { return t.lang == a.lang && t.script == a.script && t.region == a.region } // IsRoot returns true if t is equal to language "und". func (t Tag) IsRoot() bool { if int(t.pVariant) < len(t.str) { return false } return t.equalTags(und) } // private reports whether the Tag consists solely of a private use tag. func (t Tag) private() bool { return t.str != "" && t.pVariant == 0 } // CanonType can be used to enable or disable various types of canonicalization. type CanonType int const ( // Replace deprecated base languages with their preferred replacements. DeprecatedBase CanonType = 1 << iota // Replace deprecated scripts with their preferred replacements. DeprecatedScript // Replace deprecated regions with their preferred replacements. DeprecatedRegion // Remove redundant scripts. SuppressScript // Normalize legacy encodings. This includes legacy languages defined in // CLDR as well as bibliographic codes defined in ISO-639. Legacy // Map the dominant language of a macro language group to the macro language // subtag. For example cmn -> zh. Macro // The CLDR flag should be used if full compatibility with CLDR is required. // There are a few cases where language.Tag may differ from CLDR. To follow all // of CLDR's suggestions, use All|CLDR. CLDR // Raw can be used to Compose or Parse without Canonicalization. Raw CanonType = 0 // Replace all deprecated tags with their preferred replacements. Deprecated = DeprecatedBase | DeprecatedScript | DeprecatedRegion // All canonicalizations recommended by BCP 47. BCP47 = Deprecated | SuppressScript // All canonicalizations. All = BCP47 | Legacy | Macro // Default is the canonicalization used by Parse, Make and Compose. To // preserve as much information as possible, canonicalizations that remove // potentially valuable information are not included. The Matcher is // designed to recognize similar tags that would be the same if // they were canonicalized using All. Default = Deprecated | Legacy canonLang = DeprecatedBase | Legacy | Macro // TODO: LikelyScript, LikelyRegion: suppress similar to ICU. ) // canonicalize returns the canonicalized equivalent of the tag and // whether there was any change. func (t Tag) canonicalize(c CanonType) (Tag, bool) { if c == Raw { return t, false } changed := false if c&SuppressScript != 0 { if t.lang < langNoIndexOffset && uint8(t.script) == suppressScript[t.lang] { t.script = 0 changed = true } } if c&canonLang != 0 { for { if l, aliasType := normLang(t.lang); l != t.lang { switch aliasType { case langLegacy: if c&Legacy != 0 { if t.lang == _sh && t.script == 0 { t.script = _Latn } t.lang = l changed = true } case langMacro: if c&Macro != 0 { // We deviate here from CLDR. The mapping "nb" -> "no" // qualifies as a typical Macro language mapping. However, // for legacy reasons, CLDR maps "no", the macro language // code for Norwegian, to the dominant variant "nb". This // change is currently under consideration for CLDR as well. // See http://unicode.org/cldr/trac/ticket/2698 and also // http://unicode.org/cldr/trac/ticket/1790 for some of the // practical implications. TODO: this check could be removed // if CLDR adopts this change. if c&CLDR == 0 || t.lang != _nb { changed = true t.lang = l } } case langDeprecated: if c&DeprecatedBase != 0 { if t.lang == _mo && t.region == 0 { t.region = _MD } t.lang = l changed = true // Other canonicalization types may still apply. continue } } } else if c&Legacy != 0 && t.lang == _no && c&CLDR != 0 { t.lang = _nb changed = true } break } } if c&DeprecatedScript != 0 { if t.script == _Qaai { changed = true t.script = _Zinh } } if c&DeprecatedRegion != 0 { if r := normRegion(t.region); r != 0 { changed = true t.region = r } } return t, changed } // Canonicalize returns the canonicalized equivalent of the tag. func (c CanonType) Canonicalize(t Tag) (Tag, error) { t, changed := t.canonicalize(c) if changed { t.remakeString() } return t, nil } // Confidence indicates the level of certainty for a given return value. // For example, Serbian may be written in Cyrillic or Latin script. // The confidence level indicates whether a value was explicitly specified, // whether it is typically the only possible value, or whether there is // an ambiguity. type Confidence int const ( No Confidence = iota // full confidence that there was no match Low // most likely value picked out of a set of alternatives High // value is generally assumed to be the correct match Exact // exact match or explicitly specified value ) var confName = []string{"No", "Low", "High", "Exact"} func (c Confidence) String() string { return confName[c] } // remakeString is used to update t.str in case lang, script or region changed. // It is assumed that pExt and pVariant still point to the start of the // respective parts. func (t *Tag) remakeString() { if t.str == "" { return } extra := t.str[t.pVariant:] if t.pVariant > 0 { extra = extra[1:] } if t.equalTags(und) && strings.HasPrefix(extra, "x-") { t.str = extra t.pVariant = 0 t.pExt = 0 return } var buf [max99thPercentileSize]byte // avoid extra memory allocation in most cases. b := buf[:t.genCoreBytes(buf[:])] if extra != "" { diff := len(b) - int(t.pVariant) b = append(b, '-') b = append(b, extra...) t.pVariant = uint8(int(t.pVariant) + diff) t.pExt = uint16(int(t.pExt) + diff) } else { t.pVariant = uint8(len(b)) t.pExt = uint16(len(b)) } t.str = string(b) } // genCoreBytes writes a string for the base languages, script and region tags // to the given buffer and returns the number of bytes written. It will never // write more than maxCoreSize bytes. func (t *Tag) genCoreBytes(buf []byte) int { n := t.lang.stringToBuf(buf[:]) if t.script != 0 { n += copy(buf[n:], "-") n += copy(buf[n:], t.script.String()) } if t.region != 0 { n += copy(buf[n:], "-") n += copy(buf[n:], t.region.String()) } return n } // String returns the canonical string representation of the language tag. func (t Tag) String() string { if t.str != "" { return t.str } if t.script == 0 && t.region == 0 { return t.lang.String() } buf := [maxCoreSize]byte{} return string(buf[:t.genCoreBytes(buf[:])]) } // Base returns the base language of the language tag. If the base language is // unspecified, an attempt will be made to infer it from the context. // It uses a variant of CLDR's Add Likely Subtags algorithm. This is subject to change. func (t Tag) Base() (Base, Confidence) { if t.lang != 0 { return Base{t.lang}, Exact } c := High if t.script == 0 && !(Region{t.region}).IsCountry() { c = Low } if tag, err := addTags(t); err == nil && tag.lang != 0 { return Base{tag.lang}, c } return Base{0}, No } // Script infers the script for the language tag. If it was not explicitly given, it will infer // a most likely candidate. // If more than one script is commonly used for a language, the most likely one // is returned with a low confidence indication. For example, it returns (Cyrl, Low) // for Serbian. // If a script cannot be inferred (Zzzz, No) is returned. We do not use Zyyy (undetermined) // as one would suspect from the IANA registry for BCP 47. In a Unicode context Zyyy marks // common characters (like 1, 2, 3, '.', etc.) and is therefore more like multiple scripts. // See http://www.unicode.org/reports/tr24/#Values for more details. Zzzz is also used for // unknown value in CLDR. (Zzzz, Exact) is returned if Zzzz was explicitly specified. // Note that an inferred script is never guaranteed to be the correct one. Latin is // almost exclusively used for Afrikaans, but Arabic has been used for some texts // in the past. Also, the script that is commonly used may change over time. // It uses a variant of CLDR's Add Likely Subtags algorithm. This is subject to change. func (t Tag) Script() (Script, Confidence) { if t.script != 0 { return Script{t.script}, Exact } sc, c := scriptID(_Zzzz), No if t.lang < langNoIndexOffset { if scr := scriptID(suppressScript[t.lang]); scr != 0 { // Note: it is not always the case that a language with a suppress // script value is only written in one script (e.g. kk, ms, pa). if t.region == 0 { return Script{scriptID(scr)}, High } sc, c = scr, High } } if tag, err := addTags(t); err == nil { if tag.script != sc { sc, c = tag.script, Low } } else { t, _ = (Deprecated | Macro).Canonicalize(t) if tag, err := addTags(t); err == nil && tag.script != sc { sc, c = tag.script, Low } } return Script{sc}, c } // Region returns the region for the language tag. If it was not explicitly given, it will // infer a most likely candidate from the context. // It uses a variant of CLDR's Add Likely Subtags algorithm. This is subject to change. func (t Tag) Region() (Region, Confidence) { if t.region != 0 { return Region{t.region}, Exact } if t, err := addTags(t); err == nil { return Region{t.region}, Low // TODO: differentiate between high and low. } t, _ = (Deprecated | Macro).Canonicalize(t) if tag, err := addTags(t); err == nil { return Region{tag.region}, Low } return Region{_ZZ}, No // TODO: return world instead of undetermined? } // Variant returns the variants specified explicitly for this language tag. // or nil if no variant was specified. func (t Tag) Variants() []Variant { v := []Variant{} if int(t.pVariant) < int(t.pExt) { for x, str := "", t.str[t.pVariant:t.pExt]; str != ""; { x, str = nextToken(str) v = append(v, Variant{x}) } } return v } // Parent returns the CLDR parent of t. In CLDR, missing fields in data for a // specific language are substituted with fields from the parent language. // The parent for a language may change for newer versions of CLDR. func (t Tag) Parent() Tag { if t.str != "" { // Strip the variants and extensions. t, _ = Raw.Compose(t.Raw()) if t.region == 0 && t.script != 0 && t.lang != 0 { base, _ := addTags(Tag{lang: t.lang}) if base.script == t.script { return Tag{lang: t.lang} } } return t } if t.lang != 0 { if t.region != 0 { maxScript := t.script if maxScript == 0 { max, _ := addTags(t) maxScript = max.script } for i := range parents { if langID(parents[i].lang) == t.lang && scriptID(parents[i].maxScript) == maxScript { for _, r := range parents[i].fromRegion { if regionID(r) == t.region { return Tag{ lang: t.lang, script: scriptID(parents[i].script), region: regionID(parents[i].toRegion), } } } } } // Strip the script if it is the default one. base, _ := addTags(Tag{lang: t.lang}) if base.script != maxScript { return Tag{lang: t.lang, script: maxScript} } return Tag{lang: t.lang} } else if t.script != 0 { // The parent for an base-script pair with a non-default script is // "und" instead of the base language. base, _ := addTags(Tag{lang: t.lang}) if base.script != t.script { return und } return Tag{lang: t.lang} } } return und } // returns token t and the rest of the string. func nextToken(s string) (t, tail string) { p := strings.Index(s[1:], "-") if p == -1 { return s[1:], "" } p++ return s[1:p], s[p:] } // Extension is a single BCP 47 extension. type Extension struct { s string } // String returns the string representation of the extension, including the // type tag. func (e Extension) String() string { return e.s } // ParseExtension parses s as an extension and returns it on success. func ParseExtension(s string) (e Extension, err error) { scan := makeScannerString(s) var end int if n := len(scan.token); n != 1 { return Extension{}, errSyntax } scan.toLower(0, len(scan.b)) end = parseExtension(&scan) if end != len(s) { return Extension{}, errSyntax } return Extension{string(scan.b)}, nil } // Type returns the one-byte extension type of e. It returns 0 for the zero // exception. func (e Extension) Type() byte { if e.s == "" { return 0 } return e.s[0] } // Tokens returns the list of tokens of e. func (e Extension) Tokens() []string { return strings.Split(e.s, "-") } // Extension returns the extension of type x for tag t. It will return // false for ok if t does not have the requested extension. The returned // extension will be invalid in this case. func (t Tag) Extension(x byte) (ext Extension, ok bool) { for i := int(t.pExt); i < len(t.str)-1; { var ext string i, ext = getExtension(t.str, i) if ext[0] == x { return Extension{ext}, true } } return Extension{}, false } // Extensions returns all extensions of t. func (t Tag) Extensions() []Extension { e := []Extension{} for i := int(t.pExt); i < len(t.str)-1; { var ext string i, ext = getExtension(t.str, i) e = append(e, Extension{ext}) } return e } // TypeForKey returns the type associated with the given key, where key and type // are of the allowed values defined for the Unicode locale extension ('u') in // http://www.unicode.org/reports/tr35/#Unicode_Language_and_Locale_Identifiers. // TypeForKey will traverse the inheritance chain to get the correct value. func (t Tag) TypeForKey(key string) string { if start, end, _ := t.findTypeForKey(key); end != start { return t.str[start:end] } return "" } var ( errPrivateUse = errors.New("cannot set a key on a private use tag") errInvalidArguments = errors.New("invalid key or type") ) // SetTypeForKey returns a new Tag with the key set to type, where key and type // are of the allowed values defined for the Unicode locale extension ('u') in // http://www.unicode.org/reports/tr35/#Unicode_Language_and_Locale_Identifiers. // An empty value removes an existing pair with the same key. func (t Tag) SetTypeForKey(key, value string) (Tag, error) { if t.private() { return t, errPrivateUse } if len(key) != 2 { return t, errInvalidArguments } // Remove the setting if value is "". if value == "" { start, end, _ := t.findTypeForKey(key) if start != end { // Remove key tag and leading '-'. start -= 4 // Remove a possible empty extension. if (end == len(t.str) || t.str[end+2] == '-') && t.str[start-2] == '-' { start -= 2 } if start == int(t.pVariant) && end == len(t.str) { t.str = "" t.pVariant, t.pExt = 0, 0 } else { t.str = fmt.Sprintf("%s%s", t.str[:start], t.str[end:]) } } return t, nil } if len(value) < 3 || len(value) > 8 { return t, errInvalidArguments } var ( buf [maxCoreSize + maxSimpleUExtensionSize]byte uStart int // start of the -u extension. ) // Generate the tag string if needed. if t.str == "" { uStart = t.genCoreBytes(buf[:]) buf[uStart] = '-' uStart++ } // Create new key-type pair and parse it to verify. b := buf[uStart:] copy(b, "u-") copy(b[2:], key) b[4] = '-' b = b[:5+copy(b[5:], value)] scan := makeScanner(b) if parseExtensions(&scan); scan.err != nil { return t, scan.err } // Assemble the replacement string. if t.str == "" { t.pVariant, t.pExt = byte(uStart-1), uint16(uStart-1) t.str = string(buf[:uStart+len(b)]) } else { s := t.str start, end, hasExt := t.findTypeForKey(key) if start == end { if hasExt { b = b[2:] } t.str = fmt.Sprintf("%s-%s%s", s[:start], b, s[end:]) } else { t.str = fmt.Sprintf("%s%s%s", s[:start], value, s[end:]) } } return t, nil } // findKeyAndType returns the start and end position for the type corresponding // to key or the point at which to insert the key-value pair if the type // wasn't found. The hasExt return value reports whether an -u extension was present. // Note: the extensions are typically very small and are likely to contain // only one key-type pair. func (t Tag) findTypeForKey(key string) (start, end int, hasExt bool) { p := int(t.pExt) if len(key) != 2 || p == len(t.str) || p == 0 { return p, p, false } s := t.str // Find the correct extension. for p++; s[p] != 'u'; p++ { if s[p] > 'u' { p-- return p, p, false } if p = nextExtension(s, p); p == len(s) { return len(s), len(s), false } } // Proceed to the hyphen following the extension name. p++ // curKey is the key currently being processed. curKey := "" // Iterate over keys until we get the end of a section. for { // p points to the hyphen preceding the current token. if p3 := p + 3; s[p3] == '-' { // Found a key. // Check whether we just processed the key that was requested. if curKey == key { return start, p, true } // Set to the next key and continue scanning type tokens. curKey = s[p+1 : p3] if curKey > key { return p, p, true } // Start of the type token sequence. start = p + 4 // A type is at least 3 characters long. p += 7 // 4 + 3 } else { // Attribute or type, which is at least 3 characters long. p += 4 } // p points past the third character of a type or attribute. max := p + 5 // maximum length of token plus hyphen. if len(s) < max { max = len(s) } for ; p < max && s[p] != '-'; p++ { } // Bail if we have exhausted all tokens or if the next token starts // a new extension. if p == len(s) || s[p+2] == '-' { if curKey == key { return start, p, true } return p, p, true } } } // CompactIndex returns an index, where 0 <= index < NumCompactTags, for tags // for which data exists in the text repository. The index will change over time // and should not be stored in persistent storage. Extensions, except for the // 'va' type of the 'u' extension, are ignored. It will return 0, false if no // compact tag exists, where 0 is the index for the root language (Und). func CompactIndex(t Tag) (index int, ok bool) { // TODO: perhaps give more frequent tags a lower index. // TODO: we could make the indexes stable. This will excluded some // possibilities for optimization, so don't do this quite yet. b, s, r := t.Raw() if len(t.str) > 0 { if strings.HasPrefix(t.str, "x-") { // We have no entries for user-defined tags. return 0, false } if uint16(t.pVariant) != t.pExt { // There are no tags with variants and an u-va type. if t.TypeForKey("va") != "" { return 0, false } t, _ = Raw.Compose(b, s, r, t.Variants()) } else if _, ok := t.Extension('u'); ok { // Strip all but the 'va' entry. variant := t.TypeForKey("va") t, _ = Raw.Compose(b, s, r) t, _ = t.SetTypeForKey("va", variant) } if len(t.str) > 0 { // We have some variants. for i, s := range specialTags { if s == t { return i + 1, true } } return 0, false } } // No variants specified: just compare core components. // The key has the form lllssrrr, where l, s, and r are nibbles for // respectively the langID, scriptID, and regionID. key := uint32(b.langID) << (8 + 12) key |= uint32(s.scriptID) << 12 key |= uint32(r.regionID) x, ok := coreTags[key] return int(x), ok } // Base is an ISO 639 language code, used for encoding the base language // of a language tag. type Base struct { langID } // ParseBase parses a 2- or 3-letter ISO 639 code. // It returns a ValueError if s is a well-formed but unknown language identifier // or another error if another error occurred. func ParseBase(s string) (Base, error) { if n := len(s); n < 2 || 3 < n { return Base{}, errSyntax } var buf [3]byte l, err := getLangID(buf[:copy(buf[:], s)]) return Base{l}, err } // Script is a 4-letter ISO 15924 code for representing scripts. // It is idiomatically represented in title case. type Script struct { scriptID } // ParseScript parses a 4-letter ISO 15924 code. // It returns a ValueError if s is a well-formed but unknown script identifier // or another error if another error occurred. func ParseScript(s string) (Script, error) { if len(s) != 4 { return Script{}, errSyntax } var buf [4]byte sc, err := getScriptID(script, buf[:copy(buf[:], s)]) return Script{sc}, err } // Region is an ISO 3166-1 or UN M.49 code for representing countries and regions. type Region struct { regionID } // EncodeM49 returns the Region for the given UN M.49 code. // It returns an error if r is not a valid code. func EncodeM49(r int) (Region, error) { rid, err := getRegionM49(r) return Region{rid}, err } // ParseRegion parses a 2- or 3-letter ISO 3166-1 or a UN M.49 code. // It returns a ValueError if s is a well-formed but unknown region identifier // or another error if another error occurred. func ParseRegion(s string) (Region, error) { if n := len(s); n < 2 || 3 < n { return Region{}, errSyntax } var buf [3]byte r, err := getRegionID(buf[:copy(buf[:], s)]) return Region{r}, err } // IsCountry returns whether this region is a country or autonomous area. This // includes non-standard definitions from CLDR. func (r Region) IsCountry() bool { if r.regionID == 0 || r.IsGroup() || r.IsPrivateUse() && r.regionID != _XK { return false } return true } // IsGroup returns whether this region defines a collection of regions. This // includes non-standard definitions from CLDR. func (r Region) IsGroup() bool { if r.regionID == 0 { return false } return int(regionInclusion[r.regionID]) < len(regionContainment) } // Contains returns whether Region c is contained by Region r. It returns true // if c == r. func (r Region) Contains(c Region) bool { return r.regionID.contains(c.regionID) } func (r regionID) contains(c regionID) bool { if r == c { return true } g := regionInclusion[r] if g >= nRegionGroups { return false } m := regionContainment[g] d := regionInclusion[c] b := regionInclusionBits[d] // A contained country may belong to multiple disjoint groups. Matching any // of these indicates containment. If the contained region is a group, it // must strictly be a subset. if d >= nRegionGroups { return b&m != 0 } return b&^m == 0 } var errNoTLD = errors.New("language: region is not a valid ccTLD") // TLD returns the country code top-level domain (ccTLD). UK is returned for GB. // In all other cases it returns either the region itself or an error. // // This method may return an error for a region for which there exists a // canonical form with a ccTLD. To get that ccTLD canonicalize r first. The // region will already be canonicalized it was obtained from a Tag that was // obtained using any of the default methods. func (r Region) TLD() (Region, error) { // See http://en.wikipedia.org/wiki/Country_code_top-level_domain for the // difference between ISO 3166-1 and IANA ccTLD. if r.regionID == _GB { r = Region{_UK} } if (r.typ() & ccTLD) == 0 { return Region{}, errNoTLD } return r, nil } // Canonicalize returns the region or a possible replacement if the region is // deprecated. It will not return a replacement for deprecated regions that // are split into multiple regions. func (r Region) Canonicalize() Region { if cr := normRegion(r.regionID); cr != 0 { return Region{cr} } return r } // Variant represents a registered variant of a language as defined by BCP 47. type Variant struct { variant string } // ParseVariant parses and returns a Variant. An error is returned if s is not // a valid variant. func ParseVariant(s string) (Variant, error) { s = strings.ToLower(s) if _, ok := variantIndex[s]; ok { return Variant{s}, nil } return Variant{}, mkErrInvalid([]byte(s)) } // String returns the string representation of the variant. func (v Variant) String() string { return v.variant }